Still, given the level of spending on AI, it still needs a viable business model beyond subscriptions, which won’t be able to drive profits from billions of people’s eyeballs like the ad-driven businesses that have defined the last 20 years of the internet. Even the largest tech companies know they need to ship the world-changing agents they keep hyping: AI that can fully replace coworkers and complete tasks in the real world.
For now, investors are mostly buying into the hype of the powerful AI systems that these data center buildouts will supposedly unlock in the future. At some point the biggest spenders, like OpenAI, will need to show investors that the money spent on the infrastructure buildout was worth it.
There’s also still a lot of uncertainty about the technical direction that AI is heading in. LLMs are expected to remain critical to more advanced AI systems, but industry leaders can’t seem to agree on which additional breakthroughs are needed to achieve artificial general intelligence, or AGI. Some are betting on new kinds of AI that can understand the physical world, while others are focused on training AI to learn in a general way, like a human. In other words, what if all this unprecedented spending turns out to have been backing the wrong horse?
The question now
What makes this moment surreal is the honesty. The same people pouring billions into AI will openly tell you it might all come crashing down.
Taylor framed it as two truths existing at once. “I think it is both true that AI will transform the economy,” he told me, “and I think we’re also in a bubble, and a lot of people will lose a lot of money. I think both are absolutely true at the same time.”
He compared it to the internet. Webvan failed, but Instacart succeeded years later with essentially the same idea. If you were an Amazon shareholder from its IPO to now, you’re looking pretty good. If you were a Webvan shareholder, you probably feel differently.
“When the dust settles and you see who the winners are, society benefits from those inventions,” Amazon founder Jeff Bezos said in October. “This is real. The benefit to society from AI is going to be gigantic.”
Goldman Sachs says the AI boom now looks the way tech stocks did in 1997, several years before the dot-com bubble actually burst. The bank flagged five warning signs seen in the late 1990s that investors should watch now: peak investment spending, falling corporate profits, rising corporate debt, Fed rate cuts, and widening credit spreads. We’re probably not at 1999 levels yet. But the imbalances are building fast. Michael Burry, who famously called the 2008 housing bubble collapse (as seen in the film The Big Short), recently compared the AI boom to the 1990s dot-com bubble too.
Maybe AI will save us from our own irrational exuberance. But for now, we’re living in an in-between moment when everyone knows what’s coming but keeps blowing more air into the balloon anyway. As Altman put it that night at dinner: “Someone is going to lose a phenomenal amount of money. We don’t know who.”
Alex Heath is the author of Sources, a newsletter about the AI race, and the cohost of ACCESS, a podcast about the tech industry’s inside conversations. Previously, he was deputy editor at The Verge.




