Close Menu
UK Daily: Tech, Science, Business & Lifestyle News UpdatesUK Daily: Tech, Science, Business & Lifestyle News Updates
    What's Hot

    How Many Medals So Far? – Hollywood Life

    February 7, 2026

    League 2 match report from Priestfield Stadium

    February 7, 2026

    Top 7 Dropshipping Products To Sell In February 2026

    February 7, 2026
    Facebook X (Twitter) Instagram
    Trending
    • How Many Medals So Far? – Hollywood Life
    • League 2 match report from Priestfield Stadium
    • Top 7 Dropshipping Products To Sell In February 2026
    • M25 clockwise within J23 | Clockwise | Congestion
    • Review: Paradox Singapore, Clarke Quay, Singapore
    • Brighton music venue selling urinal ‘used by celebrities’
    • Bitcoin Price Roars Above $71,000 After Days Of Sell-Offs
    • Why OpenAI and Anthropic are really fighting about ads
    • London
    • Kent
    • Glasgow
    • Cardiff
    • Belfast
    Facebook X (Twitter) Instagram YouTube
    UK Daily: Tech, Science, Business & Lifestyle News UpdatesUK Daily: Tech, Science, Business & Lifestyle News Updates
    Subscribe
    Saturday, February 7
    • Home
    • News
      1. Kent
      2. London
      3. Belfast
      4. Birmingham
      5. Cardiff
      6. Edinburgh
      7. Glasgow
      8. Liverpool
      9. Manchester
      10. Newcastle
      11. Nottingham
      12. Sheffield
      13. West Yorkshire
      Featured

      ‘Miniature’ mountain creature with ‘squeaker’-like call discovered as new species

      Science November 9, 2023
      Recent

      Top 7 Dropshipping Products To Sell In February 2026

      February 7, 2026

      M25 clockwise within J23 | Clockwise | Congestion

      February 7, 2026

      Brighton music venue selling urinal ‘used by celebrities’

      February 7, 2026
    • Lifestyle
      1. Celebrity
      2. Fashion
      3. Food
      4. Leisure
      5. Social Good
      6. Trending
      7. Wellness
      8. Event
      Featured

      How Many Medals So Far? – Hollywood Life

      Celebrity February 7, 2026
      Recent

      How Many Medals So Far? – Hollywood Life

      February 7, 2026

      Review: Paradox Singapore, Clarke Quay, Singapore

      February 7, 2026

      His Family’s Wealth Compared to Thompson – Hollywood Life

      February 7, 2026
    • Science
    • Business
    • Sports

      League 2 match report from Priestfield Stadium

      February 7, 2026

      Live updates from Gillingham v Tranmere Rovers, Maidstone United v Slough Town

      February 7, 2026

      Saturday February 7 to Wednesday February 11

      February 6, 2026

      Gillingham manager Gareth Ainsworth looks ahead to their home game against Tranmere Rovers this Saturday and a parting conversation with chairman Brad Galinson

      February 6, 2026

      Former Kent Cricket captain David Fulton urges current skipper Daniel Bell-Drummond to enjoy ‘well deserved’ testimonial year

      February 6, 2026
    • Politics
    • Tech
    • Property
    • Press Release
    UK Daily: Tech, Science, Business & Lifestyle News UpdatesUK Daily: Tech, Science, Business & Lifestyle News Updates
    Home » AI maps how a new antibiotic targets gut bacteria | MIT News

    AI maps how a new antibiotic targets gut bacteria | MIT News

    bibhutiBy bibhutiDecember 11, 2025 Tech No Comments6 Mins Read
    Facebook Twitter LinkedIn WhatsApp Telegram
    Share
    Facebook Twitter LinkedIn Telegram WhatsApp



    For patients with inflammatory bowel disease, antibiotics can be a double-edged sword. The broad-spectrum drugs often prescribed for gut flare-ups can kill helpful microbes alongside harmful ones, sometimes worsening symptoms over time. When fighting gut inflammation, you don’t always want to bring a sledgehammer to a knife fight.

    Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and McMaster University have identified a new compound that takes a more targeted approach. The molecule, called enterololin, suppresses a group of bacteria linked to Crohn’s disease flare-ups while leaving the rest of the microbiome largely intact. Using a generative AI model, the team mapped how the compound works, a process that usually takes years but was accelerated here to just months.

    “This discovery speaks to a central challenge in antibiotic development,” says Jon Stokes, senior author of a new paper on the work, assistant professor of biochemistry and biomedical sciences at McMaster, and research affiliate at MIT’s Abdul Latif Jameel Clinic for Machine Learning in Health. “The problem isn’t finding molecules that kill bacteria in a dish — we’ve been able to do that for a long time. A major hurdle is figuring out what those molecules actually do inside bacteria. Without that detailed understanding, you can’t develop these early-stage antibiotics into safe and effective therapies for patients.”

    Enterololin is a stride toward precision antibiotics: treatments designed to knock out only the bacteria causing trouble. In mouse models of Crohn’s-like inflammation, the drug zeroed in on Escherichia coli, a gut-dwelling bacterium that can worsen flares, while leaving most other microbial residents untouched. Mice given enterololin recovered faster and maintained a healthier microbiome than those treated with vancomycin, a common antibiotic.

    Pinning down a drug’s mechanism of action, the molecular target it binds inside bacterial cells, normally requires years of painstaking experiments. Stokes’ lab discovered enterololin using a high-throughput screening approach, but determining its target would have been the bottleneck. Here, the team turned to DiffDock, a generative AI model developed at CSAIL by MIT PhD student Gabriele Corso and MIT Professor Regina Barzilay.

    DiffDock was designed to predict how small molecules fit into the binding pockets of proteins, a notoriously difficult problem in structural biology. Traditional docking algorithms search through possible orientations using scoring rules, often producing noisy results. DiffDock instead frames docking as a probabilistic reasoning problem: a diffusion model iteratively refines guesses until it converges on the most likely binding mode.

    “In just a couple of minutes, the model predicted that enterololin binds to a protein complex called LolCDE, which is essential for transporting lipoproteins in certain bacteria,” says Barzilay, who also co-leads the Jameel Clinic. “That was a very concrete lead — one that could guide experiments, rather than replace them.”

    Stokes’ group then put that prediction to the test. Using DiffDock predictions as an experimental GPS, they first evolved enterololin-resistant mutants of E. coli in the lab, which revealed that changes in the mutant’s DNA mapped to lolCDE, precisely where DiffDock had predicted enterololin to bind. They also performed RNA sequencing to see which bacterial genes switched on or off when exposed to the drug, as well as used CRISPR to selectively knock down expression of the expected target. These laboratory experiments all revealed disruptions in pathways tied to lipoprotein transport, exactly what DiffDock had predicted.

    “When you see the computational model and the wet-lab data pointing to the same mechanism, that’s when you start to believe you’ve figured something out,” says Stokes.

    For Barzilay, the project highlights a shift in how AI is used in the life sciences. “A lot of AI use in drug discovery has been about searching chemical space, identifying new molecules that might be active,” she says. “What we’re showing here is that AI can also provide mechanistic explanations, which are critical for moving a molecule through the development pipeline.”

    That distinction matters because mechanism-of-action studies are often a major rate-limiting step in drug development. Traditional approaches can take 18 months to two years, or more, and cost millions of dollars. In this case, the MIT–McMaster team cut the timeline to about six months, at a fraction of the cost.

    Enterololin is still in the early stages of development, but translation is already underway. Stokes’ spinout company, Stoked Bio, has licensed the compound and is optimizing its properties for potential human use. Early work is also exploring derivatives of the molecule against other resistant pathogens, such as Klebsiella pneumoniae. If all goes well, clinical trials could begin within the next few years.

    The researchers also see broader implications. Narrow-spectrum antibiotics have long been sought as a way to treat infections without collateral damage to the microbiome, but they have been difficult to discover and validate. AI tools like DiffDock could make that process more practical, rapidly enabling a new generation of targeted antimicrobials.

    For patients with Crohn’s and other inflammatory bowel conditions, the prospect of a drug that reduces symptoms without destabilizing the microbiome could mean a meaningful improvement in quality of life. And in the bigger picture, precision antibiotics may help tackle the growing threat of antimicrobial resistance.

    “What excites me is not just this compound, but the idea that we can start thinking about the mechanism of action elucidation as something we can do more quickly, with the right combination of AI, human intuition, and laboratory experiments,” says Stokes. “That has the potential to change how we approach drug discovery for many diseases, not just Crohn’s.”

    “One of the greatest challenges to our health is the increase of antimicrobial-resistant bacteria that evade even our best antibiotics,” adds Yves Brun, professor at the University of Montreal and distinguished professor emeritus at Indiana University Bloomington, who wasn’t involved in the paper. “AI is becoming an important tool in our fight against these bacteria. This study uses a powerful and elegant combination of AI methods to determine the mechanism of action of a new antibiotic candidate, an important step in its potential development as a therapeutic.”

    Corso, Barzilay, and Stokes wrote the paper with McMaster researchers Denise B. Catacutan, Vian Tran, Jeremie Alexander, Yeganeh Yousefi, Megan Tu, Stewart McLellan, and Dominique Tertigas, and professors ​​Jakob Magolan, Michael Surette, Eric Brown, and Brian Coombes. Their research was supported, in part, by the Weston Family Foundation; the David Braley Centre for Antibiotic Discovery; the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council of Canada; M. and M. Heersink; Canadian Institutes for Health Research; Ontario Graduate Scholarship Award; the Jameel Clinic; and the U.S. Defense Threat Reduction Agency Discovery of Medical Countermeasures Against New and Emerging Threats program.

    The researchers posted sequencing data in public repositories and released the DiffDock-L code openly on GitHub.



    Source link

    Featured Just In Top News
    Share. Facebook Twitter LinkedIn Email
    Previous ArticleBlood tests reveal obesity rapidly accelerates Alzheimer’s progression
    Next Article Who is Jen Shah? 5 Things to Know About the ‘RHOSLC’ Star – Hollywood Life
    bibhuti
    • Website

    Keep Reading

    How Many Medals So Far? – Hollywood Life

    League 2 match report from Priestfield Stadium

    M25 clockwise within J23 | Clockwise | Congestion

    Review: Paradox Singapore, Clarke Quay, Singapore

    Brighton music venue selling urinal ‘used by celebrities’

    Why OpenAI and Anthropic are really fighting about ads

    Add A Comment
    Leave A Reply Cancel Reply

    Editors Picks

    89th Utkala Dibasa Celebration Brings Odisha’s Vibrant Culture to London

    April 8, 2024

    US and EU pledge to foster connections to enhance research on AI safety and risk.

    April 5, 2024

    Holi Celebrations Across Various Locations in Kent Attract a Diverse Range of Community Participation

    March 25, 2024

    Plans for new Bromley tower blocks up to 14-storeys tall refused

    December 4, 2023
    Latest Posts

    Subscribe to News

    Get the latest sports news from NewsSite about world, sports and politics.

    Advertisement

    Recent Posts

    • How Many Medals So Far? – Hollywood Life
    • League 2 match report from Priestfield Stadium
    • Top 7 Dropshipping Products To Sell In February 2026
    • M25 clockwise within J23 | Clockwise | Congestion
    • Review: Paradox Singapore, Clarke Quay, Singapore

    Recent Comments

    1. Register on Anycubic users say their 3D printers were hacked to warn of a security flaw
    2. Pembuatan Akun Binance on Braiins Becomes First Mining Pool To Introduce Lightning Payouts
    3. tadalafil tablets sale on The market is forcing cloud vendors to relax data egress fees
    4. cerebrozen reviews on Kent director of cricket Simon Cook adapting to his new role during the close season
    5. Glycogen Review on The little-known town just 5 miles from Kent border with stunning beaches and only 600 residents
    The News Times Logo
    Facebook X (Twitter) Pinterest Vimeo WhatsApp TikTok Instagram

    News

    • UK News
    • US Politics
    • EU Politics
    • Business
    • Opinions
    • Connections
    • Science

    Company

    • Information
    • Advertising
    • Classified Ads
    • Contact Info
    • Do Not Sell Data
    • GDPR Policy
    • Media Kits

    Services

    • Subscriptions
    • Customer Support
    • Bulk Packages
    • Newsletters
    • Sponsored News
    • Work With Us

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    © 2026 The News Times. Designed by The News Times.
    • Privacy Policy
    • Terms
    • Accessibility

    Type above and press Enter to search. Press Esc to cancel.

    Manage Cookie Consent
    To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
    Functional Always active
    The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
    Preferences
    The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
    Statistics
    The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
    Marketing
    The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
    • Manage options
    • Manage services
    • Manage {vendor_count} vendors
    • Read more about these purposes
    View preferences
    • {title}
    • {title}
    • {title}